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Abstract
Atomic scale density functional calculations are used to predict the behaviour
of defects in uranium mononitride (UN). Two different density functional codes
(VASP and CASTEP) were employed with supercells containing from 8 to 250
atoms (providing a significant range of defect concentrations). Schottky and
nitrogen Frenkel point defect formation energies, local lattice relaxations and
overall lattice parameter change, as well as the defect induced electronic density
redistribution, are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Actinide nitrides have been studied experimentally because they have some advantages over
oxides as fuel materials for fast reactors. In particular, they exhibit higher thermal conductivity
and higher metal density [1–3]. Recently there has been renewed interest in these materials
because of the Generation-IV reactor initiative [4]. In order to predict fuel performance under
different operating conditions and to understand the evolution of a spent fuel over long times
in a repository, it is necessary to develop a better knowledge of the defect induced processes
caused by material self-irradiation and the accumulation of fission products. Defect modelling
studies have been performed for oxide fuels over several decades, first using classical [5–7] and
recently first principles quantum mechanical methods [8, 9]. Conversely, for nitrides, to date
only a preliminary first principles LMTO simulation of pure UN has been reported [10], and
a single molecular dynamics study [11]. The purpose of this paper is to report first principles
calculations of point defects in UN and analyse their properties.

2. Methodology

In our simulations of perfect and defective uranium nitride, two different plane wave basis
set density functional theory (DFT) computer codes were employed, VASP 4.6 [12] and
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Table 1. A comparison of calculated (PW91(PAW) and PW91(US)) and experimental perfect
lattice properties [1, 2, 16, 21, 22] of UN, U2N3 and UN2.

PW91(PAW) PW91(US)

Lattice properties UN U2N3 UN2 UN U2N3 UN2

Lattice constant, a0 (Å) 4.864 3.647 5.259 4.954 3.741 5.256
(0 K) 5.802 5.722
Experimental a0 (Å) 4.886 3.700 5.299 4.886 3.700 5.299

5.825 5.825
Bulk modulus, B (GPa) 203 208.9 264.6 182 153.6 235.8
Experimental B (GPa) 194 — — 194 — —
Cohesive energy, E0 (eV) 14.7 36.27 21.50 12.3 30.1 17.9
Experimental E0 (eV) 13.6 — — 13.6 — —
Q (U) (e) 1.66 2.08 2.48 — — —
Q (N) (e) −1.66 −1.50, −1.24 — — —

−1.34

CASTEP [13]. In both cases exchange–correlation was described using the Perdew–Wang-91
GGA functional [14]. For the VASP calculations the scalar relativistic PAW pseudopotentials
were used to represent the core electrons of U (6s26p66d25f27s2) and N (2s22p3) atoms, which
therefore have 14 and 5 valence electrons respectively. The CASTEP calculations used the
same valence electron sets as the VASP calculations but employed an ultrasoft pseudopotential
(US) representation to describe the core electrons. Both codes used a plane wave cut-off energy
of 400 eV, with a 3 × 3 × 3 Monkhorst–Pack [15] k-point mesh in the Brillouin zone for
supercells containing 16 atoms and more, and 8 × 8 × 8 k-sets for primitive unit cells and
eight atom supercells. Hereafter, we refer to these two types of calculation as PW91(PAW) and
PW91(US), respectively. Further increase of the number of the k-points does not change the
results.

Stoichiometric UN exhibits the rock-salt structure with two atoms per primitive unit cell.
In the PW91(PAW) calculations, point defects were simulated using supercells with 2 × 2 × 2,
3 × 3 × 3, 4 × 4 × 4 and 5 × 5 × 5 extended translation vectors of the primitive unit cell
with complete structure optimization (16, 54, 128 and 250 atoms per supercell, respectively).
In addition we used an eight atom single cubic unit cell. Neutral vacancies were modelled
by removing a U or N atom from the supercell to infinity (the reference state) to form VN or
VU. Nitrogen Frenkel defects were described by moving a N atom from a regular site into the
interstitial position in the cube centre, at the distance of 8.6 Å from the vacancy in the 128 atom
supercell. Lastly, the very large 5 × 5 × 5 supercell was used to model a pair of well separated
N and U vacancies. As with all the defect simulations, this was accompanied by a complete
atomic and electronic structural optimization. The PW91(US) point defect calculations were
performed, for comparison, using an eight atom cubic unit cell (with complete atomic and
electronic structural optimization).

3. Results of calculations

3.1. Perfect UN crystal

Perfect stoichiometric UN was modelled using both PW91(PAW) and PW(US) approaches,
and in table 1 results are compared to experimental data [1, 16]. This shows that both methods
were able to successfully reproduce the basic properties of the material (lattice constant, bulk
modulus and cohesive energy). The effective (Bader) charges Q calculated using VASP [17]
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(a)

(b)

Figure 1. Calculated density of states (in arbitrary units) for primitive unit cells of UN projected
onto U 5f and N 2p orbitals for the spin up (above) and spin down (below); the zero of energy is the
Fermi energy; (a) CASTEP, (b) VASP.

are ±1.6e which is indicative of the complex chemical bonding, with covalency contributions
due to U 5f and N 2p orbital hybridization, observed in the projected density of states (DOS; see
figure 1). Charge transfer from U atoms towards nearest N atoms, which retain their spherical
shape, is clearly seen in figure 2, the difference electron density map. This is consistent with
discussions in previous theoretical [10] and experimental [18, 19] studies that described the
mixed metallic–covalent chemical bonding in UN; this is quite different to the semiconducting
nature of UO2 [20]. The observed difference in results (e.g. unoccupied DOS for U 5f states
and lattice constants) could be caused by difference in pseudopotentials used in CASTEP and
VASP calculations.

3.2. Stoichiometric compounds of uranium and nitrogen

Further calculations on experimentally known relevant stoichiometric compounds (U2N3 [21]
and UN2 [22]) were also carried out. Again both codes were able to successfully reproduce
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(a) (b)

Figure 2. (a) The total electron density of defect free UN calculated using VASP; (b) the difference
between the self-consistent perfect crystal density and that of a superposition of the U and N
atomic densities. Red (full lines) indicate electron density excess, blue (dashed) its deficiency.

The electronic density increment is 0.005e Å
−3

.

the lattice parameters of these materials (as shown in table 1). Of particular interest are
the predicted changes in effective charges as a function of decreasing U:N ratio (from UN
to UN2). It appears that the uranium charge increases while the nitrogen charge decreases,
which indicates a significant propensity for charge transfer dependent on the local atomic
arrangement4.

3.3. Single defect calculations

The first two columns in table 2 report the internal energies of formation, E form, for VU and VN

calculated using three different cells containing 8, 16 and 54 atoms respectively. For VN the
energy is calculated via

E form(VN) = Edef + E(N) − Eperf

where E(N) is the energy for a spin-polarized isolated nitrogen atom. In each case, a single
atom has been removed.

The first column presents energies from calculations in which the cell parameters and atom
positions remain fixed in their perfect lattice positions, that is, atoms are not allowed to relax
in response to defect formation (unrelaxed). Energies in the second column are derived from
calculations that allowed full lattice relaxation. The top two rows of numbers, calculated using
the largest cell, correspond to a 3.7% VN or VU concentration and include the smallest defect–
defect interaction (via the periodic conditions). The differences between the unrelaxed and
relaxed lattice formation energies are the relaxation (or response) energies. For the largest cell
these are similar: 1 eV for VU and 0.7 eV for a VN. The response of the lattice to defect inclusion
can also be assessed by considering the difference in macroscopic unit cell dimension between
perfect (a0) and defective materials (see table 2). Interestingly, at this low concentration the VN

has little effect on the lattice constant, a 0.17% a0 compression, while the VU causes a slightly
larger compression of 0.21% a0.

4 Note: CASTEP at present does not predict topological (Bader) charges, only Mulliken ones. Although Mulliken
populations calculated for UN, U2N3 and UN2 using CASTEP showed very similar changes as a function of U:N ratio,
because of the inherent uncertainties of Mulliken populations derived from plane wave calculations we chose not to
report charges here.
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Table 2. Calculated defect properties: formation energies, E form for VU and VN defects before
and after relaxation of the lattice; changes to the lattice constant, a0, upon relaxation as a % of
a0 (negative values imply that the lattice has compressed); total change in supercell volume due to
defect formation; local displacements of nearest neighbour atoms around vacancies (negative values
imply inward movement).

Defect/supercell
E form (eV)
(unrelaxed)

E form (eV)
(relaxed)

Cell
dimension
change
% of a0

Defect
volume
(Å

3
)

Nearest
neighbour
displacement
(Å)

PW91(PAW)
54 atom cell
(3.7%)
N vacancy 9.8 9.1 −0.17 3.94 −0.03 (−0.05)a

U vacancy 10.4 9.4 −0.21 4.75 0.13 (0.14)a

PW91(PAW)
16 atom cell
(12.5%)
N vacancy 10.7 9.7 −0.60 3.38 −0.01
U vacancy 11.2 10.3 −1.02 6.88 0.10

PW91(PAW) 8
atom cell (25%)
N vacancy 9.3 9.1 −1.00 3.37 Noneb

U vacancy 10.7 10.1 −3.39 10.58 Noneb

PW91(US) 8
atom cell (25%)
N vacancy 8.8 8.8 −0.58 2.11 Noneb

U vacancy 11.7 9.3 −2.61 9.27 Noneb

a 250 atom supercell containing both vacancies.
b By symmetry.

Given the small global effect at the low defect concentration (i.e. on relaxation energy and
cell dimension), defect calculations were also performed at the much higher concentrations of
12.5% and even 25% (see table 2). Interestingly the defect formation energies do not reveal any
considerable dependence on the concentration. (The energies calculated using the PW91(US)
are slightly smaller but reveal the same trend.) Despite the very large defect concentrations, the
cell dimension decreased by only 0.6% (at 12.5%) and 1.0% (at 25%) for VN and by 1.0% (at
12.5%) and 3.4% (at 25%) for VU. Thus, for the VN defect, the increase in lattice parameter is
almost a linear function of the defect concentration. For the VU the situation is slightly different.
First, at larger concentrations it affects the lattice constant more than does VN. Furthermore,
the increase in lattice parameter with defect concentration deviates from a linear response. The
PW91(US) calculations give similar but smaller lattice constant changes to PW91(PAW) at
25% defect concentrations (see table 2).

In order to better compare the effects of different concentrations, the change in cell
dimension is translated into a defect volume. These are the total changes in volume (Å

3
)

imparted by the defect and are reported in table 2. The linear increase in lattice parameter with
defect concentration is evident in that the three different simulation sizes give rise to similar
VN volumes of around 3.5 Å

3
. Of course, the constancy of this value would only arise if the

nitrogen defect had a very local influence on the lattice. Similar effects have been predicted
in ZrN and TiN [23] and lead to the experimentally observed stability of these nitrides over
extensive ranges in nitrogen nonstoichiometry.
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The VU defects induce larger defect volumes, which also increase markedly with defect
concentration: from 4.75 to 10.58 Å

3
. The PW91(US) calculations also predict defect volumes

that are much larger for VU than VN.
In order to investigate the local effects of defect inclusion, the atomic displacements around

defects were also investigated (last column in table 2). For VN this corresponded to a 0.67%
inward displacement of the six nearest U atoms at a 3.7% vacancy concentration, with smaller
0.49% inward displacements at the 12.5% vacancy concentration. At both defect concentrations
the second neighbour N atoms remain practically at their perfect lattice sites.

In contrast, the six nearest N atoms around the VU are displaced outwards by 2.69%
at a 3.7% vacancy concentration, and at 12.5% they are moved by 2.04%. Furthermore,
twelve second neighbour U atoms are displaced inwards by 0.75% and 0.57% respectively.
Nevertheless, as for the VN the trend is for a decrease in relaxation of defect nearest neighbour
atoms with increasing defect concentration, due to defect–defect interactions. It is interesting
to contrast the change in significant local atom relaxation direction between VN and VU with
the observation of overall lattice contraction for both defects.

The second way in which local effects have been investigated is by generating electron
density difference maps (see figure 3). For the VN, figure 3(a) shows that the electron density
from the missing N atom is almost entirely localized on the six nearest neighbour U atoms. In
the case of the VU (figure 3(b)), the electronic density redistribution is more spread out over
the immediate vicinity. This is confirmed by the Bader effective charges: in the 54 atom cell
an additional charge of 0.22e is transferred from the missing N atom onto each of six U ions.
In comparison a hole density of 0.16e is transferred from the missing U atom onto each of the
nearest N ions; the remaining positive density is transferred to more remote ions.

We also made calculations for a pair of well separated U and N vacancies in a 250 atom
supercell. Atomic displacements around each vacancy are similar to those obtained in separate
defect calculations at a 3.7% defect concentration (see table 2).

3.4. Frenkel and Schottky pairs

The PW91(PAW) calculations of the internal energies for forming intrinsic Frenkel and
Schottky defect pairs using an unrelaxed 128 atom supercell yield values of 6.9 and 5.5 eV
respectively. That is, the Frenkel energy is somewhat higher than the Schottky energy, reflecting
the compact nature of the rock-salt lattice that provides little space for an interstitial defect.
Subsequently when lattice ions are allowed to relax in response to defect inclusion, these
energies are reduced to 4.6 and 3.8 eV so that, while the Schottky energy is still lower,
the difference is rather less. Furthermore, the Schottky energy obtained using the 250 atom
supercell, 4.4 eV, is slightly higher and even closer to the Frenkel energy. Although for this
largest simulation the two vacancies are included in the same 250 atom supercell, the observed
displacements of atoms around the individual defects are very similar to those observed in the
separate 54 atom supercell calculations (see table 2).

In oxides and halides with the rock-salt structure, the Frenkel energy is larger than the
Schottky energy even with full lattice relaxation [24]. To investigate why this is not the case
here, the charge distribution of the Frenkel pair was analysed. Interestingly it showed quite
complex electron density redistribution (see figure 4). In particular, the electron density that
the interstitial N atom gains from its nearest neighbours, which results in an effective charge
of −1.07e, is considerably less than that in a host crystalline site (−1.6e). To demonstrate this
result, we plotted in figures 4(b) and (c) the difference maps with respect to the isolated N atom
and ion, respectively. The effective charge of −1e for the interstitial nitrogen ion is in good
agreement with an indirect conclusion based on experimental observations [19].
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(a)

(b)

Figure 3. (a) The total (left) and difference (right) electron densities around the VN. The latter is the
difference of the self-consistent total density for a defective crystal minus a sum of the density of a
single N atom centred on the vacancy and the density of the defective crystal. The electron density
of a missing N atom (blue, dashed lines) is transferred to the six nearest U atoms (red, full lines).

(b) is the equivalent for a VU defect. The density increment is 0.01e Å
−3

.

4. Conclusions

This study has demonstrated that atomic scale DFT-GGA-PW91 plane wave calculations with
scalar relativistic pseudopotentials as implemented in the VASP and CASTEP codes (combined
with a supercell approach) can be used successfully to model a series of uranium nitride
perfect lattice structures and also point defects in uranium mononitride. The only difference
between the two sets of calculations was in the pseudopotentials employed: PAW (VASP)
versus ultrasoft pseudopotentials (CASTEP). Certain differences that arose in the results are
attributed to this.

We have shown that VN defects have hardly any effect on the UN lattice constant, even for
concentrations as high as 25%. For this defect the lattice response is confined to small inward
displacements of the nearest neighbour uranium ions and a very local defect induced electronic
density redistribution. This response to the formation of a vacancy is more reminiscent of a
metal than an ionic or semiconducting material (e.g. UO2). Conversely, VU defects induce
somewhat larger (but still small) defect volumes, which increase in magnitude as a function of
defect concentration. In this case the nearest neighbour nitrogen atoms are displaced outwards
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(a) (b) (c)

Figure 4. A (110) cross-section of (a) the total and ((b), (c)) the difference electron density of the
Frenkel pair. The interstitial atom (in the lower part) is strongly polarized, along with its two N and
two U nearest neighbour ions; other ions are only slightly perturbed. (b) and (c) are plotted with

respect to the N atom and ion respectively (increments are 0.01 and 0.0112e Å
−3

).

and the hole is distributed over first and to a lesser extent second neighbour atoms. Lastly, we
find that, once complete lattice relaxation has been performed, the Frenkel and Schottky pair
formation energies are very similar. Consequently, intrinsic vacancy and interstitial defects will
exist in comparable concentrations so that both are available for mediating defect transport.
Recent first principles calculations of ZrN and TiN [23] also predict a local crystal perturbation
by vacancies, as do calculations of VN in AlN [25], despite the fact that AlN has a different
crystal structure.

Analysis of the electron density redistribution shows that the effective charge of N atoms
depends critically on their position and environment, which limits the applicability of MD
simulations based on formal invariant charged species [11] to studies of defects in nitrides.
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